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ON SOME NEW GENERAL AND COMPLEMENTARY ENERGY THEOREMS FOR
THE RATE PROBLEMS IN FINITE STRAIN, CLASSICAL ELASTO-PLASTICITY

Satya N. Atluri

/
School of Engineerin nce and Mgshanics ke
Tgila Institute of Technology =~

Atlanta, Georgia 30332, USA

Summary: General variational theorems, for the rate problem of classical

elasto-plasticity at finite strains, in both Updated Lagrangean (UL) and

"Total Lagrangean (TL) rate forms, and in terms of alternate measures of stress-

rate and conjugate strain-rates, are critically studied from the point of

view of their application. Attention is primarily focussed on the derivation

of .censistent complementary energy rate principles, which could-: form the - - -
basis of consistent and rational assumed stress type finite element methods;

and two such principles, in both to UL and TL forms, are newly stated. Systema-
tic procedures to exploit these new principles in the context of a finite
element method are also discussed. Also certain general modified variational
theorems, to enable an accurate numerical treatment of near incompressible

behaviour at large plastic strains, are discussed.

1. Introduction
The advent of high speed digital computers and powerful numerical methods,

such as the finite element methods, in the past two decades or so, have great-

ly expanded the scope of application of nonlinear theories of solid continua

to practical problems in engineering. In the formulation of such numerical

methods as the finite element methods, for problems of nonlinear solid

mechanics, variational theorems (and their generalizations to account for
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discontinuities at interelement boundaries in a finité element assembly)
have played a central role. [See, for instance, WASHIZU (1975), NEMAT-NASSER
(1974) , ATLURI (1975), and ATLURI and MURAKAWA (1977), for a discussion of
finite element formulations in nonlinear elasticity].

Rigorous and consistent formulations for numerical analysis of lafge
strain elasto-plastic problems have become necessary due to the iﬁcreased
interest, in recent years, in analyzing problems such as metal-forming
processes, ductile fracture initiation and stable crack growth
in cracked bodies, etc. Indeed several such formulations, and applications
of the same, have appeared in recent literature. Among these can be cited
the works of: HIBBIT, MARCAL, and RICE (1970), who use a total Lagrangean

(TL) rate formulation [wherein a fixed reference frame is used] ; NEEDLEMAN

o

(1972), NEEDLEMAN and TVERGAARD (1977), and HUTCHINSON (197}) th a}sq use

« ew ® < Lo

e sl < L O,
"IL rate fB;mulation, but with convected coordinates; YAMADA, HIRAKAWA, and

WIFI (1977) who use an Updated Lagrangean (UL) rate formulation [wherein

the current configuration is used as a reference for the subsequent step);
OSIAS (1972) who also uses an UL scheme,which, due to the use of an elastic-
plastic rate constitutive law that does not admit to a potential, leads to
non-symmetric stiffness matrices through a Galerkin Scheme; McMEEKING and
RICE (1975) who also use a UL scheme which, through the use of a rate consti-
tutive law with a potential, leads to symmetric stiffnesses; and NEMAT-NASSER
and TAYA (1976) whose formulation represents a modification to that of Mc-
MEEKING and RICE (1975) to improve the accuracy in the case of large deforma-
tion of compressible materials. All the above cited works employ a clarsical
rate-independent clasto-plastic theory, as generalized by HILL (1959). It
should also be noted that all the above finite element rate formulations

are based on the principle of virtual work in rate form, as first stated by




HILL (1959); and thus all the above finite element schemes are based on
assumed displacements that are compatible at interelement boundaries.

However, to the best of the author's knowledge, no studies concerning
the convergence of the assumed displacement finite element methods of the
above cited type, for the rate problems of classical elasto-plasticity, exist
in the literature. Even in the somewhat simpler problem of finite elasticity,
studies of convergence of finite element methods, based on potential energy
principles, are just beginning to emerge [ODEN (1978)]. From this stand-

point, as well as from that of possibly studying solution bounds, it is of

interest to consider consistent formulations of numerical (finite element)

methods based on complementary energy principles for the rate problem of

finite strain elasto-plasticity.

Another 1mportant question in numerical schemes for elastic-plastic flow

e+ - @ c e -

at large strains is how to deal with the effectively incompressible behaviour
at such magnitudes of strain. It is well-known that numerical schemes based
directly on the principle of virtual work fail in the limit of incompressibility

unless the mean stress is introduced as an additional variable in the formu-

lation. Such formulations, which are essentially variations of the well-

known HELLINGER (1914) - REISSNER (1950) theorem, were introduced for nearly

or precisely incompressible linear elastic materials by  HERRMANN (1965),

TAYLOR, PISTER, and HERRMANN, (1968), and by KEY (1969). To improve the
numerical accuracy in the near-incompressible caé&, NAGTEGAAL, PARKS, and
RICE (1974, Appendix 2) modify their UL rate potential energy formulation for

elasto-plasticity, in a way analogous to that of KEY (1969), except, instead

F of the mean pressure as in KEY (1969), they use the dilatational strain rate
F as an independent variable. As a consequence, even though the formulation of

KEY is valid for both nearly and precisely incompressible cases, the formula-
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tion of NAGTEGAAL et.al ceases to be valid in the case of precise incompressi-
bility. However, due to the inherent nature of the complementary energy
principle (with assumed stresses as variables), it is much easier to treat
situations of near or precise incompressiblity when finite element schemes
based on a complementary energy principle are used. The works of TONG (1969),
and PIAN and LEE (1976) in solving problems of linear elastic near-incompres-
sible solids; and that of MURAKAWA and ATLURI (1978b) in solving finite
strain problems of incompressible nonlinear elastic solids, all of which are
based on appropriate complementary energy principles, tend to support the
above view. Moreover, as is well-known, better solutions for stresses are
obtained from numerical schemes based on complementary energy principles than
from those based on potential energy principles (wherein, the stress solution
is obtained by differentiation of the numerical solution for displacements,

which results in a loss of accuracy for stresses).

Also, as noted by MASUR and POPELAR (1976), the complementary energy
approach hold# a considerable promise for applications to buckling problems,
wherein, an approximation to the stress state be}ore buckling is often
possible even when displacements remain unknown.

For the above reasons, special emphasis is placed in the present paper 2
on the study of the existence of consistent complementary energy rate theorems
for the rate problem of finite strain classical, rate-independent, elasto-
plasticity. Both the types of formulations, viz., the Total Lagrangean as
well as the Updated Lagrangean, are considered. In this process two new
consistent rate complementary energy principles for the rate problem of finite
strain classical elasto-plasticity have been found. Systematic procedures
to exploit these complementary rate principles in the context of assumed stress

finite element methods are also discussed. In addition, a critical evaluations
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of the relative effectiveness of general rate principles, in both TL and

UL rate forms, and in terms of alternate stress-rate and conjugate strain-rate
measures, for application to numerical analysis of finite strain elasto-
plasticity problems, is made. Also included in the present paper are certain
general modified variational theorems which are of significance in the
numerical treatment of near incompressible behaviour at large magnitudes of

plastic strain.

II. Preliminaries:

For simplicity we refer all configurations of the body to a fixed rect-

angular cartesian coordinate system. We adopt the notation: (-) under symbol
denotes a vector; (~) under symbol denotes a second-order tensor; | R é . b
implies that a, = Aik bk; g - B denotes product of two tensors such that
(é. . s)ij ?A:Lk Bkj; (_é :g) = trace (ﬁT .-2) =A~ijBij; and u . t = uiti'

A particle in the undeformed body has a position vector x = (xagd)

where e, are unit cartesian bases. We adopt the notation Zo = @a a/axa),
in the undeformed configuration, Co. The position vector of the particle
in the current deformed state, say CN’ is y = (yi_e_i). We also use the no-

tation that ZN - B/Byi). The gradient of y is the tensor F, ie., F =

(- IR
. = . 1 h
" y); Fi,a yi’a ayi/axa We also note that the base vectors of the

|
1
convected coordinates X, in the current deformed configuration, CN’ are given by, 1
R "%y .- The non-singular tensor F is considered to have the polar- 1
b}
|
decomposition, r=a. (5 + h), where (RI‘ +L1) is a symmetric positive definite i
|

tensor called the stretch tensor, I is an identity tensor, and g is an ortho-
T -1 l

gonal rotation tensor such that g~ = 2 + The deformation tensor G is ;
defined by G = ET <E=(1+ ‘13)2. The Green-Lagrange strain tensor is
defined by g = 1/2 R e 1/2 (e +5T +$T . &) vhere ¢ is the gradienmt

of the displacement vector u (= y - x), ie., ¢ = QO_E)T such that By g

5




For our present purposes, we introduce the stress measures: (i)

the true (Cauchy) stress tensor T (T = Tagﬂagﬁ); (ii) a weighted

Pk
B B S|
stress tensor, generally referred to as the Kirchhoff stress tensor, g = JL
= P = 3P where J is the determinent of the matrix [y, 1);

Bl =T Bl Lo

(iii) the Piola-Lagrange or the First Piola-Kirchhoff stress tensor, L=

(ta.e ej); and (iv) the second Piola-Kirchhoff stress temsor, g (Ss Be ea)v

As discpssed, for instance, by TRUESDELL and NOLL (1965) and FRAEIJS DE

VEUBEKE (1972), the relations between the above stress measures are seen to be:

R ) o RS W

Log-F =10 . @)
and 8= J(E“1 “ g g-T) - %, g-T ; 3) "
where E'TAé.ggzl)T. We also note tﬁat evenéhough g and s are distinctly |
different tensors, they have the interesting property that daB = SGB where

the contravariant components caa and the components saﬁ are as defined

earlier. Finally we introduce a stress measure which is labelled by FRAELJS

DE VEUBEKE (1972) as the Jaumann Stress, ) through the relation,

£=1/2(£.g+gT-,5T) (4)
=12s . QER @D - g (5)

It is seen from the above that the stress tensors I, 9, 8, and r are symmetric,

while t is unsymmetric.

P R

Also, as shown, for instance, by TRUESDELL and NOLL (1965) and FRAELJS

DE VEUBEKE (1972), the linear momentum balance (IMB) equation, the angular

momentum balance (AMB) equation, the traction boundary condition (TBC), and

the displacement boundary condition (DBC) can be written as follows:

6




Hop+eB=o 6)
o T o
or ¥ .(g:-E)+pB=o )
or @ .t+p%8=0 (®)

where B is the body force per unit mass, and pN and po are the mass densities

per unit volume in CN and co’ respectively.

AMB:
T T
12 e RS (10)
% L-&%8 % or (h+1I) .t .q=symetric (lla,b)
TBC: E = 2 5 :s = E i ('3 = :ET) . . e ; (l.za’b)

where n is a unit normal to the surface S in configuration Co, where

c?
o

tractions are prescribed to be t per unit area.

DBC:

on Suo (12¢)

u-

e

where su is the surface in Co where displacements are prescribed to be ;.
o
it is possible to have a mixed-mixed problem wherein, at any point on the

catloaa oo de e ar s Aledelaatagis b2 L atubdel Sl L a

surface of the body in co certain components of tractions and the conjugate

components of displacements may be simultaneously prescribed.

in connection with the rate formulations of classical elasto-plasticity, the
requirements for a suitable stress rate are now well recognized as: that the

stress rate vanishes when the solid continuum undergoes a rigid motion alone
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and when the stress tensor is referred to a coordinz*e system undergoing

the same motion; and that the rate of invariants of the stress tensor is
stationary when the stress rate vanishes. The questions of objective stress
rates and their use in classical rate theories of plasticity have been dis-
cussed by several authors; for instance, OLDROYD (1950, 1958), TRUESDELL (1955),
COTTER and RIVLIN (1955), PRAGER (1961), SEDOV (1966), MASUR (1961),

NAGHDI and WAINWRIGHT (1961), and HILL (1967). With this background, we now
discuss the following rate variational principles in the rate theory of

classical elasto-plasticity.

III. Finite Strain Elastic-Plastic Analysis:

3.1 Rate Variational Principles in Updated Lagrangean (UL) Formulation

In the UL formulation, we refer the solution variables (displacements,

strains, and stresses) in the state CN+1 to the configuration of the body in
the immediately preceding state, C,, which is pressumed to be known. Let\
Y? be the current (in state CN) Cartesian spatial coordinates of a particle,
to be used as a reference system for the current increment, ie., from CN to

C v EHEE IN be the true stress in CN. Thus in the UL rate formulatica, one

N+1
is concerned essentially with an initial stress problem, whereas the initial

displacements in CN as referred to CN itself are clearly zero. Let‘s, S,

4

and i represent the rates of the Piola-Lagrange stress, an Piola-Kirchhoff

stress, and Jaumann stress, respectively, referred to the current configuration.

Further, we note that E = £§+1 - IF; é = £g+1 % IF’ etc., where £g+1 da
defined as the an Piola-Kirchhoff stress in state CN+1 as referred to the

configuration CN (ie., measured per unit area in CN)’ etc.,. Let g? represent
the gradient operator in the current coordinates, and U be the rate of deforma~
tion from the current configuration. We define the rate of displacement

§ e cT - * . T 0 N 0 N-‘
gradient ¢ = (gyg) and write ¢ = € + @, where € Léij = 1/2 (Bui/ayj + Bujlbyi)J

8
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is the UL Strain rate and Q[d’ij =1/2 (aﬁilayl; - bﬁj/ByI:_)] is the spin-rate.

3:1:0: Rate Potentials:

%
We also use‘g to denote the corotational rate (or what is also usually
called the "Jaumann rate") of Kirchhoff stress, J. Based on general dis-
cussions concerning stress rates, contained, for instance, in the References

cited earlier, it is seen that;

27 <k.y -7 8 (13)
and £=g"-¢ .- (14)

Considering a classical elasto-plastic theory, it has been noted by HILL

. *
(1967a,b) that a rate potential, V, can be written for'g such that,

8" = 30fe (15)

~

As also noted by HILL (1967a), the form of the rate potential V can be

written as:

V=1/21L,,,;E. ¢ £ o

2
151580~ g Pedbid) (16)

which yields a bi-linear constitutive law through Eq. (15). Following HILL
(1967a) we note that, in Eq. (16), Lijkl is a tensor of instantaneous elastic

modulii, assumed to be positive definite and symmetric under ij—k4& inter-

PR O RN P A

change, ¢ = 1, or 0 according as A ¢ is positive or negative; \,, is a
& kL k& ij

tensor normal to the hyperplane interface between elastic and plastic

.~ Y R gt

domain in the strain-rate space; while g is a scalar related to the measure

of rate of hardening due to plastic deformation. Prandtl-Reuss type rate

equations of the form of Eq. (15) for classical isotropically hardening
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materials have been used by several authors, for instance, HUTCHINSON (1973),
McMEEKING and RICE: (12775), and NEMAT-NASSER and TAYA (1976).
From Eqs. (13) and (15) it is seen that if a rate potential V exists

* s -
for 2 , then a potentialW also exists for g, such that,

- ¥ /3¢ an

and further it is seen that

TN.
~

=v-1: ¢ .8 (18)

Likewise, from Eqs. (14, 15 and 13), it can also be seen that a rate potential

U for .5 also exists such that,

& =ap/eT (19)
where LbEvefn @ .o 12 @ (20)
=w+121: @9 (21)

Further, by applying the polar-decomposition theorem, we see that,

- YT - N+1 @+ h) @2)

+1 1

Where FN and

~N
tively, in CN+1 as referred to CN; and h is the UL rate of stretch. Writing
N+1
N
that,

i
E are the deformation gradient and rotation tensors, respec-

=1L + g (vhere ¢ is the UL rate of rotation), it is seen from Eq. (22)

+ R | (23)

é =
~

lQ-

Thus, as may be expected, it is seen that in the UL rate formulation, ﬁ = 5

)
=]
(=%
53
11

LI‘J where f, and Q are as defined earlier. From the definition of the

Jaumann stress r, as given in Eqs. (4,5), the UL rate £ is seen to be given by;

10
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P12t + +1 Lg+g" .M (24a)

= 1/2 e+t +" L a+0" . M (24b)

or, also, i =5+ 1/2 @ e+s ) (25)
comparing Eqs. (13) and (25), it is seen that,

g=g -2¢ .27 . D (26)

v *
Thus if V is a rate potential for ¢ , it then follows from Eq. (26) that

there exists a rate potential Q for £, such that

£ = 2/34 = /3¢ 27)
where, Q=v-1/21: (¢ .8 (28)

¢ e N - -« . e -

Results given in Eqs. (27) and (28) are useful, as shown later on, in formulat-
ing consistent complementary energy rate principles for the rate theory of
finite strain plasticity.

With the above considerations for rate potentials for alternate stress-
rates, we proceed to formulate the boundary value problem in terms of the
piecewise linear incremental field equations and boundary conditions in the

UL rate form, as follows:

3.1.1: Field Equations and Boundary conditions in UL Rate Form:

In terms of g, € and u
~ A~ bt

Considering, for instance, the linear momentum balance equation for

£§+1 in the UL Coordinates, we see from Eq. (7) that this can be written as:
B
&[N @] 4 N B - o 29)

11
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where, as defined earlier, 8N+1 is the an Piola-Kirchhoff stress in CN+1

~N
as measured per unit area in CN and i:+1 = LN +s etc. The initial stress
field IF’ which is assumed to be equilibrated (in an actual numerical im-
plementacion this may not be true, and hence it is often necessary to employ

corrective iteration procedures to check the true equilibrium in CN)’ is

then required to sacisfy the equation,
VN . TN + pNQF =0 (30)

Comparing Eqs. (29)iand (30) we obtain the rate form of the linear momentum
balance equation for é. Using arguments similar to the above, the following

field equations and boundary conditions are derived in UL rate form.

(1MB)- D olg+N . @al +oMB-0 : (31)
. ot CT
(AMB)~ 5=5 (32)
. " r' L] 5 -‘
(Compatibility)+ £ =& = 1/2(¢ + &) = /2 @w + @w' | (33)
(TBC)~ 2. [g+r . @wl=r=tars (34)
N
(DBC)~ u=uats ; (35)
‘N
where pN is the mass density in CN; g are rate of body forces/unit mass;

sa , and S are appropriate segments of the boundary cf the solid in CN;
N

%
and n is a unit normal to the boundary of the solid in Cy*

In terms of £, é, and 4

~

In manner analogous to above, these field equations can be shown to be:

(LB )~ L E+eB=o (36)
(AMB)~ T M=t L (37)

or, equivalently, (AMB) can also be written as:

Stlasdaiaace i
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or B‘L +1 s LNt A .h+z o X
(Compatibility)~ & = (Fu)T

or, equivalently,
(TBC)~ n .£=£ats
(DBC)— same as in Eq. (35).

3.1.2 General Variational Principles in UL Rate Form:

3.1.2.1: In terms of §, ¢ and u:

Using a virtual work principle as applicable to an initial stress pro-
blem, and following the procedure outlined by WASHIZU (1975), we obtain a :
general UL rate principle for elastic-plastic problems, analogous to the

well known HU (1955) - WASHIZU (1955) principle of linear elasticity.

*
general rate principle governing Eqs. (31 to 35 and 17) can be stated as

the condition of stationarity of the functional:

n:‘f,(g,g,g> =“[; {v;(g) = pNﬁ . £+ 1/2 LN: [(ZNQ) . @wh
N

- é: (¢ - 1/2 < (YF;) +»(Z§;)T >]}dv - I E ‘ é ds
S

N

B

-J‘ 5.. Q;-Z)ds.
Sy
N

where W is a rate potential for é, as defined through Eqs. (18 and 16). The

above rate variational principle governs the rate variables from CN

*The general variational principles as stated in Eq. (42) above, as well as
those in Eqs. (53, 69, 82, 85, 114, 119, and 127) to follow, can be modified
appropriately through the method of Lagrange Multipliers, as discussed in ATLURI

to

(38)

(38a)

(39)
(40)

(41)

This

(42)

CN+1°

and MURAKAWA (1977), to account for discontinuities at interelement boundaries

when these principles are applied to a finite element assembly.

13




The satisfaction of the fully nonlinear field equations in CN’ in a numerical
solution method such as the finite element method, must be checked at each
step; and these checks can be performed based on a variational principle
governing the nonlimear field equations at CN' The details of such corrective
iterative procedures, at the end of each increment, as the '"equilibrium check",
"compatibility mismatch check'", etc. can be found, for instance, in the thesis
by MURAKAWA (1978).

We now consider certain special cases of the general rate principle
given through Eq. (42). If Eqs. (17, 33, and 35) are met a priori, one can
reduce Eq. (42) to a functional associated with the UL rate principle of

potential energy, as:

n:Z i) {W(_) - .ur2 M @ . (ZN_;J)T]}dv
vN )
o E 43)
So,N

*
The principle 6ﬂp2 = 0 can be seen to lead to Eqs. (31,32, and 34), and is
equivalent to a principle stated originally by HILL (1959).
By inverting the relation in Eq. (17) to express 5 interms of‘é, one

can achieve a contact transformation,
Wo-g:d = -8 (8) (44)

Using Eq. (44) one can eliminate 5 from Eq. (42) to derive a HELLINGER (1914) -

REISSNER (1950) typé UL rate principle, with the associated functional:

“::121@.’2) "»3 {‘ §@ B w12 (@ - @M
N
+128: (Cw+Cwav-[ T.ua-] £.(-wis
S

5
°N UN

(45)

14
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Based on the arguments presented earlier for a linear elastic case,
for instance, by ATLURI (1975), it can be seen that in a finite element

application of the principle stated through Eq. (45), one needs to assume

over each finite element, an arbitrary, symmetric, and differentiable stress-
rate fieldlg, and a differentiable é that is also inherently compatible at %
the interelement boundaries.

We now examine the possibility of deriving a complementary energy rate
principle from Eq. (45). To this end, we first note that in the present
UL rate formulation the IMB conditions Eq. (31), are linear in‘é and

further, unlike in Eq. (7), do not involve coupling of‘é with displacement

gradients. Thus it becomes possible to satisfy both the LMB and AMB conditions,

Eqs. (31 and 32) respectively, a priori, by choosing a symmetric é such that,
$ = curl curl A + §° (46)

where A is the symmetric Maxwell-Morera-Beltrami second-order stress function
tensor for a general three-dimensional case. In Eq. (46) curl é is defined

is

U L0 AR e

such that (curl A).. = ; (curl curl A),., = e
~71ij ~71j

s A PR R ) S ey
ipk " jk,p imn®jpq mp,nq’ €ijk
the alternating tensor, and ép is any symmetric particular solution such

that,
R L S S A TP Y | %7

one simple way of satisfying Eq. (47) is to assume particular solutions for
the direct stresses éii (nosumon ij; i = 1,2,3) only, in the following way.
) - R Al O _ N
B3y J“ [-p7By - (75 uy, )5, dyy (48)

i
(no sumon i, i = 1,2,3)

and P =9 (i #3)

15




In Eq. (48) (;i) indicates 9( )/By?. However, if the above assumptions are

used in an assumed-stress type numerical scheme (discussed further below)

the question of completeness of the chosen stresses, or; in other words,

TS IRy T TS v

the effect, on that numerical solution, of the lack of account of the influence ]
% of displacement rates on the chosen shear-stress-rate field, as in Eq. (49),

| ; remains to be answered. Such effects can be only understood, in general,

from a detailed mathematical study of convergence of the method, which study

E | is not pursued in the present paper and remains an open question. Assuming

that the satisfaction of the IMB and AMB conditions in the manner of Eqs. (48 and
49) is "satisfactory'", and further if the TBC condition is also met a priori,

one can reduce Eq. (45) to a functional associated with the complementary

energy principle,

Pwn = -8 @®-12MNdw . o
VN . o £
+ t.uds (50) ;
Su
N

In a finite element application, VN can be subdivided into M subdomains,

(m=1,... M), each with a boundary ava' In general it is seen that

Vo

v . =8 + S + p_,. where S s 8 are, respectively, the portions
ol R R N

of anN where tractions and displacements are prescribed, and pmN is that

bl i il i e A" ol

portion of ava which is common to an adjacent element (interelement boundary).

f.

It is to be noted that in the finite element application of Eq. (50), the
candidate stresses 5 should, not only, satisfy the LMB and AMB conditions,
Eqs. (31) and (32), but also satisfy the interelement traction reciprocity

. 1' . o - .
condition , (_t_)+ + (t) = 0 (where t is defined through Eq. (34)) at LI

a priori. One can introduce this interelement condition directly as a condition

- ~Sp——

of constraint into Eq. (50), in order to preserve a wide choice of candidate

.t-
The superscripts (+) and (-, denote, respectively, the two sides o. pmN in
the limit that pmN is approached.
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stress-rates i, as:

w2 wsir=) [ {-5*® -2 N @D - ol
" m va
) [ t.uds+) [ £.% as (51)
m S m p R
umN mN

where :p are Lagrange-Multipliers to enforce the constraint of interelement

traction reciprocity, and these can be seen to be the displacement rates at

the interelement boundaries. The basic idea of choosing‘é, as in Eqs. (47 and
48), to satisfy the IMB condition, and the modified complementary energy
functional of Eq. (51), were used, in a somewhat less general fashion than is
given here, by ATLURI (1973) in formulating a finite element method and

| applied to solve the problem of buckling of a shallow arch. The short-

| comings of this approach were later discussed by ATLURI and MURAKAWA (1977).
Moreover, in the modified complementary energy rate principle of Eq. (51),

in addition to the fields u and s within each element, the displacement-rate

field at the interelement boundaries also enters as an independent variable.

However in the finite element application of the Hellinger-Reissner type
principle as in Eq. (45), only the two variables é (arbitrary, but differenti-
able and symmetric second order tenmsor) and i (differentiable and interelement-
compatible) need to be assumed within each element; and the interelement
traction reciprocity condition then follows a posteriori from the variational
principle. Considering this, and the fact that, in addition, one must study
the convergence properfies of the finite element scheme based on Eq. (51)

to assess the effects of choosing the particular solution in a specific

way as in Eqs. (48, 49), it appears most consistent and rational to directly
apply the Hellinger-Reissner type principle as in Eq. (45). The finite

element method thus generated based on assumed § as well as U, can be called

17




a "mixed-method", which leads to simultaneous algebraic equations for

finite element nodal displacements as well as nodal stresses (or alternatively,

T T S IR T T oW

the nodal values of the stress functions A as defined in Eq. (46)).

Finally, it is noted that the IMB condition may be satisfied more

easily by choosing §, unlike in Eqs. (46,47), such that,

R N P T ey

b o N . ‘p
§=curl curl A -1 . QNE) + 8 (52)

where ép is such that 2? . Ef - -png. However the chosen § as in Eq. (52)
then ceases to be symmetric, and thus the AMB condition must be introduced
as a constraint condition, into the associated complementary energy functional

of the type given in Eq. (50), through additional Lagrange Multipliers.

Thus it appears that a rate complementary energy principle in UL form
based on s may not be consistent and practically useful in the analysis of

finite strain plasticity problems.

3.1.2.2: In terms of 5, é, and u

~

Analogous to the way discussed earlier, it can be shown that Eqs. (36,

37,39,41,35, and 19) follow as the Euler equations and natural boundary
conditions corresponding to the stationarity of the functiomal,

T2 (u,858) = fuge) - o8 . w+ £7: [@WT - elfav

N
. . . . . |
-f Ewds-[ L. @-1)ds (s3) |
g S
N N

where U is the rate potentfal for t, as defined through Eqs. (20,21).
We now consider certain special cases of the above principle. If Eqs.
(19,39, and 35) are met a priori, one can eliminate g and t as variables from

Eq. (53) and derive a rate functional governing the rate potential energy

principle, as:

18 E
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2w = {v@ - "8 . ufav - [ (54)
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This rate variational principle was first stated by HILL (1959) and has
been widely used in finite element applications to elastic-plastic problems
[see for instance, NEEDLEMAN (1972), McMEEKING and RICE (1975), and NEMAT-
NASSER and TAYA (1976)].

It is interesting to note that both the ILMB and AMB conditions,
Eqs. (36) and (37) respectively, as well as the TBC, Eq. (41), must follow
from the principle, Bn:Z(Qé) = 0, with n:zgiven as in Eq. (54). It is
shown below that the AMB condition is inherently embedded in the special
sfructure for 6. Thus, using the definition of é (EBG/QéT) and Eq. (21),

it is seen that,

“ ' ag d r T .
te—==—[W+1/21": (¢ . &)] (55)
. 3¢ .
"91"%-*.1“ it (56a)
3¢ 3¢ 4
=g+ .ot (56b)

Wherein, the definition »f é from Eq. (17) has been used. Substituting for
é from Eq. (56b) into the AMB condition, Eq. (37), it is seen that the AMB
condition is inherently met. This is due to the special structure for 6

as given through Eq. (21). Conversely, it is seen that if, instead of

Eqs. (20, and 21), an arbitrary 6 is postulated as a function of‘é, then the
principle based on the functional in Eq. (54) ceases to be valid, since the
AMB condition ceases either to be built into the structure of 6 or to follow

unambiguously as an Euler equation from the vanishing of the first variation

of the said functional. This fact appears to be never explicitly stated in

the literature.

19

ansceien -




Now, by inverting the bi-linear relation in Eq. (19) one may achieve a con-

tact transformation,

.*o

U-t':e=-E () (57)
"

such that, £ =T (58)
of

Using Eq. (57) to eliminate & from Eq. (53) one may formally obtain a

functional:

+ 7 (@ M}av

Ie .

- Ew =] {-"@ - Py -
V
N

-f é.gds-‘r t . (u-u) ds. (59)
S

S

N YN

In fact the above functional, as the basis for a Hellinger-Reissner type

variational principle was used by NEALE (1972). However, the validity of such

HR
Eq. (59), is a valid Hellinger-Reissner type rate principle, we note that the

* *
a principle needs a closer examination. If anui = o0, with m $ as given in

corresponding Euler equations and natural boundary conditions must be: (i)

=
the IMB condition, Eq. (36); (ii) the AMB condition, Eq. (37); (iii) the
compatibility condition, Eq. (39), (iv) TBC, Eq. (41); and (v) the DBC, Eq. (35).

It is seen upon examining Eqs. (17) to (25) of NEALE'S (1972) development,

the AMB condition, Eq. (37) of the present paper, is in fact not an Euler
equation of the principle 8I = 0 [Eq. (22) of NEALE'S (1972) work, which is
identical to 6n;§ =0 of the present article]. Thus, if at all the AMB
condition is satisfied, for the validity of the principle, this condition must
be embedded in the special structure, if any, for the complementary energy

*
density function, E gs) of Eq. (57) above. To examine this possibility,

20
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consider the form of U as given from Eqs. (20 and 16)}

[ 2 L4 ‘e g . 2 N . . N . .
W=l kit 28 Pt 2 Tyt T1%, 1%, 3 o

The stress rate, t, as derived from the above, is

ol g Sty o g
Ztij =2 aé (Lijkl -2 8 lijlu) Pt uoacsade (eim + ellli)TlIIj
ji

- Tigleyy - ey (61)

where Lijkl’ o, g and Ak‘ are as defined before. The constitutive law, Eq.

1j in terms of ek!' The inversion of this

(61), is of bi-linear type for t

relation in closed form, to express W) in terms of t,, appears to be impos-

ij

sible, in general.

Rearranging the right hand side of Eq. (61), it can be rewritten as:

. * .
tji Ljikn ern (62)
. * . :
or matrix form {5}9x1 =[ L]9x9 {S]9x1 (62a)
*
Where Lijkl depends on the tensor of instantaneous elastic modulii Lijkl

(which has the symmetry properties Lijkz = Ljikz = Ljizk = Lklij) and other

: N *
quantities, o, g, Kij and Tij. However Ljikn has the only symmetry property,

%, _*
Ljikn - Lkmji (63)

*
Eventhough an analytical form for the inverse of the matrix [ L] of Eq. (62a)

appears impossible to be obtained, one may numerically i.nvert+ Eq. (62, 62a)

to write,

+However, in the "first step" of the solution if the solid remains elastic,
gnd the initial stresses T are zero, in the initial configuration C_, then

L kL L ki and hence the 9x9 matrix of Eq. (62a) cannot be inver?ed, be-
ca&‘e of tﬁl symmetry properties of Lijkz stated above.

¥
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eyy = Lins e o {8} = L7 (g (64)

A % -
where, in general, Li;kz = Lkiij' Using Eq. (64) a contact transformation

can in fact be made, to find E*QE) such that

kE fot,, = PR

34 " %3 " Vpges txe (65)

If the AMB condition, Eq. (37), is inherently embedded in the structure of

.* L]
E (t), then the condition,

. N . 3
eij Tjk + tik = symmetric (66)

must be identically satisfied when e,

is expressed in terms of tmn through

h|
Eq. (65). Doing so we see that the AMB condition is expressed by the necessary

*
condition on the structure of E gs) that

O* . N .
(3E 4atji) Tjk + tiy Must be symmetric
or .“’L“1 E TN + ; must be symmetric (67)
ijsn ‘mn ' jk ik dans
1 11

It can be seen that neither of the two terms, I and II above, is by itself
symmetric under i < k interchange. The other possible ways in which I + II %
above can be symmetric under i « k interchange are: (i) firstly, one term
is a transpose of the other; however, it is easy to see that this is not the
case; (b) secondly, the first term can be expressed as the sum of a symmetric
tensor and the transpose of the second term. Since *L;;kz cannot be found
analytically, and with the only knowledge that *L;;kz = *L;iij’ it appears
impossible to verify this assertion.

Thus, since the AMB condition is neither clearly an Euler equation
corresponding to the stationarity of n;; of Eq. (59), nor can be verified

‘%
to be embedded in the structure of E (5), the Hellinger-Reissner type principle

based on Eq. (59) appears to be of little practical value. For similar
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reasons, the complementary energy rate principle as stated by HILL (1959)
(which can be derived formally from Eq. (59) by requi?ingts to satisfy
the IMB condition, Eq. (36), and the TBC, Eq. (41), a priori) also appears

to be of little practical value.

.

w); h, u

~

13

3.1.2.3: In terms of r(t,d); a(

~

To seek alternative ways to avoid the above discussed difficulties
in formluating a consistent complementary energy rate principle and

Hellinger-Reissner type rate principle, we transform the general variational

principle associated with Eq. (53) into one involving r,'d,‘b and u as

~° o

variables.

First, by comparing Eqs. (20) and (28) we note that,

N

U=Q + 1/2';5 : (e.e) -IN

) + /21N (elle)

=q+ 1/2 ™ @) + 1 (g:T-é) (68)

Using (68) to express U in terms of Q (which is a function of;h = g) and

writing ¢ = h + o, we rewrite Eq. (53) as:

- tou ds -J; tlu-u)ds. (69)
S

In the above g is a skew-symmetric tensor. The condition of vanishing of

the first variation of the above functional can now be written as:




bpa(6us 8h; ow; o8) = [ {22 - 1/2¢e + 1.

+ LW - -mliee” - (Mg

Noting that o, and hence 89':, are skew-symmetric tensors, it can be
clearly seen that the Euler Equations and natural boundary conditions
corresponding to Eq. (70) are: (i) the constitutive law, Eq. (27); (ii)
the LMB condition, Eq. (36); (iii) the AMB condition, Eq. (38); (iv) the
compatibility condition, Eq. (40); (v) the TBC, Eq. (41); and (vi) the
DBC, Eq. (35).

One can now invert (even if numerically) the relation of Eq. (27) and

achieve a contact transformation,

§oipnate o

: B Bk A
Q- UAe+tt+1N Lo +al : (x (71b)

~

e
such that 3R /dxr = h (72)

Substituting Eq. (71) in Eq. (69) we can derive a functional, involving

only 5.1_, andhl'; (and hence ’5 and é.) as variables, corresponding to a Hellinger-
Reissner type principle which has as its Euler Equations and natural b.c,
Eqs. (36, 38, 40, 41, and 35). If, in addition, one assumes that the LMB
condition and TBC for N;:, Eqs. (36, and 41) are satisfied a priori, one can

eliminate h and u as variables from the functional in Eq. (69) and thus

obtain a complementary energy functional:




{-®@+ 2™ @ ) -falav+ [ "o L G
N suN
(73)

In the above, the definition of x [= 1/2 (t +;5T +I_N o+ gT - LN)] is

implied; and the spin-rate field ¢ is required to be skew-symmetric. The
* .
variational equation, 611C2 = 0, for constrained §t (which obey the constraint
<9 g . .
y_N . 6'5 =0 in VN andn .6t =0 at SG ) and for constrained 8¢ (which
N %

is required to be skew symmetric) is seen to lead to

*2 O .- ' . ; P
s, (8t,82) = 0 =‘]‘{[(2N2)T -« -2 _}: 6£T -[t+h .1N+;N . Q]

5&""} av + [ @ . 55) (_ﬁ_ - u) ds. (74)
S

UN

Noting that by definition, al'{*/aé = :r:l, it is clearly seen that Eq. (74) leads,

as its Euler equations and natural b.c, (i) the compatibility condition,

Eq. (40); (ii) the AMB condition, Eq. (38); and (iii) the DBC, Eq. (35).
Thus, Eq. (73) forms the basis of the most consistent and practically

useful rate complementary energy theorem for the UL rate formulation of

finite strain plasticity analysis methods because: (a) the admissiblej:‘

is required to satisfy, . priori, only the uncoupled, liinear LMB equation,

Eq. (36), and TBC, Eq. (41), which can be met easily in applications, by

settingﬁt: = zN e Fa ht;p

P

where X are first order stress functions (once-

is any particular solution such that zN

differentiable) and t L
-pNi}_; (b) the AMB conditions, the compatibility condition, and the DBC
follow unambiguously as Euler equations.

In a finite element application of the complementary rate principle
as stated through Eq. (73), the assumed stress-rate fi,eldht.:' must not only

satisfy the LMB condition (Eq. 36) within each element, but must also
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satisfy the traction reciprocity relation at the interelement boundary
viz., (Efzé)+ + (gfzé)- at pmN [where + and -, respectively, indicate the
two sides of PN in the limit that pmN is approached]. This may, in general,
pose a severe restriction on the choice of'é within each element, especially
when the element ig of a arbitrary curved geometry. In such a case, it may
be preferrable to include this interelement traction reciprocity condition
as a constraint condition directly into the functional of Eq. (73). The
Lagrange multipliers introduced to this end can be seen to be the interele-
ment boundary displacements, The thus modified complementary energy rate
principle for an assembly of a finite number of elements can be stated
as'the stationarity condition of the functional:
e @sm) =y Al - @r 2™ @t - T gy
m VmN
+f @) . uds+[ @ . s, ds} 75)
Squ pmN

In the above functional, é and‘é are chosen independently within each
element in terms of undetermined parameters, whereas':t.xp are chosen in terms
of displacements at nodes of a finite element and hence‘:x-xp are common to
elements sharing a common boundary. Thus the undetermined parameters in
the field functions for é and‘é can be eliminated at the element level and
expressed in terms of the generalized nodal displacement coordinates. The
finite element method based on Eq. (75) thus, in the end, results in a

standard stiffness matrix procedure [See MURAKAWA and ATLURI (1978a,b) for

instance, for details of finite element application of the complementary energy

rate principles in finite elasticity]. Alternatively, the interelement
traction reciprocity can be satisfied a priori by an appropriate choice of
the first-order stress finctions ¥ from which the equilibrated t are derived.
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The finite element method then, in general, will lead to a "flexibility matrix"
type approach. Such "stiffness" and "flexibility" type finite element methods
based on Eqs. (75) and (73), respectively, for analyziﬁg certain metal-
forming problems are the subjects of the author's work in progress and will

be subjects of a forthcoming paper.

3.1.3: Near Incompressibility in the Fully Plastic Range:

5 i As discussed in the introduction, an important aspect of numerical

schemes for finite strain elastic-plastic analysis is the problem of accurate

treatment of nearly incompressible deformation rates at such magnitudes of

{ strain. In a finite element application of the potential energy rate

: formulation of the type given by Eqs. (43 or 54), if the assumed deformation
rates do not a priori obey the incompressibility constraint, it may be

f necessary to retain this constraint as an a posteriori constraint through

1 ; a Lagrange multiplier, the hydrostatic pressure. To this end, consider the
i rate potential ﬁgé), Eq. (18), for a classical Prandtl-Reuss type rate

| constitutive law:

* N

W~ L b R a6

" .
The corotational rate of Kirchhoff stress, g , for a classical Prandtl-Reuss

type approximation can be written in terms of ¢, as suggested by McMEEKING

and RICE (1975), as

NN
o 2 r ; 9y Tij'ruqi. =
%13 T 0y T @ e n2 et Rl 1 e

]
where, o« = 1 if at yield and Tijeij > 0 and o = 0 otherwise; Ti? is the devia-

toric Cauchy stress in CN; C;N)z = (3/2)Tij7£j; h is the slope of the uniaxial

stress/plastic strain curve; and A and p, are Lame's constants. We rewrite

Eq. (77) as:
27




; oij = 2u Eijktekz + Ae (78)

LI

where the definition of Ei is apparent from comparing Egqs. (77) and (78).

jkt

*
We can write g in terms of its deviatoriz and hydrostatic parts, as :

3 x _ ¥, e . . a4y -
| oij oij + (1/3) ?kk§ij’ and likewise, express eij eij + (1/3)ekk61j.
| From Eq. (78) one can write;
| Ll . .* .
(e ' . 2
oij = 2 Eijkﬁekz _ 3 O)k (N + 2y )ekk (79a,b)
F 3
Using Eqs. (77-79a,b) in Eq. (76) we can write, ]
c i T L. . 2 N . .
W "”‘Eijueueij + 2 (ekk) T (e .8) (80)
} or, equivalently, 3
| ' T Sdegh ot W R
| = U - .
E pEijkzekzeij + (———g—-i5(ekk) T i . &) (81)

To obtain numerically accurate solutions in situations of fully developed
plasticity it may be advantageous to retain the hydrostatic pressure as an

f independent variable, and thus derive a mixed variational principle which

represents a modification to the potential energy rate principle given

through Eq. (43), with W expressed as in Eq. (80). To this end, we intro-

duce both'ei and €k 28 additional independent variables into the function-

j
al of Eq. (43), through the introduction of Lagrange multipliers Bij and o,

respectively. From this general variational principle (with u, eij’ € kk?
Bij’ and o, all as variables) we demand all the necessary field equations
in the case of near incompressibility. When the Lagrange multipliers are

identified with the relevant stress rates, this general rate variational

principle can be written as:




2* '. . . . v .* i ‘*
T (85 €555 Cas Ty45 Oige)

%
A ) . \o
T et Kk
={, {”‘ By efie13 * 210 I, Py ” fd B 2o
N
ro¥ 6
: e S R ;
* Lugy, gy - egqllogy - n+—ﬂ¢“Hj(kn (k, 3)
+ 1/2 T?j;k,i;k,j p Biui } dvV + Boundary terms (82)

The above general principle can be seen to be valid in both the cases of

: L)
1/2(uk i r Yy k), and ui K = du /Byﬂ has been used. If from Eq. (82) one

near and precise incompressibility. In the above, the notation,

eliminates (i) eij by defining a priori €5 = u(i i) and (ii) eliminate

€xk through a contact transformatior:

. G 1% (0 )
RS S
2 (ekk) ‘xk Oh + 2 2en + (63)

. *
one obtains a mixed variational principle, involving ug and ckk as variables,

governed by the functional,

X 2
. 3 . - (- I
*2 o A e kk
Tl U5 ) ‘-{, {”Eiju“(k,z)“(i,j) T 2p)-2_
N
LRy e
* O+ 2w Ok, 008 T Tas ek, 1)  (k, §)

1_N N 1
+ 2 Tijuk,iuk,j P B \kjdv - I t 1Y% ds (84)
T

which remains valid for nearly or even precisely incompressible behavior at

large plastic strains for all assumed displacement rates uy that do not obey

the constraint of incompressibility a priori. Eq. (84) and the associated

variational principle are analogous to the ones in the case of linear
isotropic elasticity given directly by HERRMANN (1965); however, the way
29




in which HERRMANN arrived at his principlé for the linear elastic infinitesimal
deformation case is not evident from reading his work.

Likewise, using the definition of W as in Eq. (81) in Eq. (43), and

introducing eéz and €k 28 additional independent variables into the function-
al in Eq. (43) through appropriate Lagrange Multipliers, one can derive
another alternate general variational principle, which remains valid in

the limit of incompressibility, with the associated functional:

g o
Hw (ui’ ei_]’ G : oij )
‘%
r . . . . ) 0'
£ ot 3N+ 2y 2 o _kk
‘r, B 18k ¥ 6 Sk T DYk~ Clad T3
N

+[\.1' y -e']c;*' 5 5 8 N e
(i,3) i L) ij (ki) (k,j) * 2 ij k,i'k,]

- pNBiu;} dV + boundary terms (85)

where u(i j) (i 1) uk K ij/3 and u(i 1) is defined earlier. If from

Eq. (85) one eliminates eij as a variable through a priori satisfying the

condition eij = (1,j)’ and ekk is eliminated through the contact trans-

formation given below,

i B
° €,,0 o 3

n o+ 2u 2 ke Kk

S syt =8O + 2p) (86)

one obtains an .alternate mixed variational principle, also involving u

g

i and

Kk 25 variables, governed by the functional:
é*
*2 . '.* .l l’ 0' " -—kl
Map2 (U1 1) »f, BE e (1, Dk, ) ¥ 73 YK,k
N

.* 2
- ( . . . .
o 1_N 2 1
S0h + 250 150G, 0%k, ) Y2 T1gV, 1%, " PRy dY

'{'c'i (ds
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~ It is interesting to observe that the procedure based on Eq. (88) ceases to

Equation (87) and the associated principle are analogous to those derived

by KEY (1969) for linear elastic infinitesmal deformation problems; except

that, KEY (1969), derives such a principle through FRAEIJS DE VEUBEKE'S
(1951) interpretation of what is generally known as the Hellinger-Reissner
theorem in linear elasticity.

NAGTEGAAL, PARKS, and RICE (1974, Appendix I1 therein), to improve the
accuracy of UL rate finite element formulations for problems of large plastic

flow, suggest a mixed formulation based on the functional:
P e 3 SRR L EE 2R W 1
Mmp3 (U15€ ) ‘J‘; Pt T 3 e
N

2
Kk

N . . 1 N . . . . ) ;
L Tiju(k,i)u(k,j) +3 Tijuk,iuk,j - pNBiuifdv - £ tiuids (88)
T

where ¢ and 0,! is related to ¢!, through an equation of the type
q

=L
137 i, i ij
of Eq. (79a). It is worth noting that the above formulation, Eq. (88), is

e
i

analogous to the present formulation given in Eq. (87), except for the fact

that, whereas Oy aPpears as a variabic in Eq. (87), € appears in Eq. (88).

kk

be valid in the limit of precise incompressibility. Moreover, in the discrete

(finite-element) version of the functional corresponding to Eq. (88) (when

appropriate discrete approximations for u, and €k 2re introduced),

NAGTEGAAL, et al., (1974) proceed to eliminate € 25 2 variable at the

element level and introduce a modified definition for the strain energy

density functional, &. The rigorous theoretical validity of the modified
discrete functional, as a variational basis for obtaining discretized
equilibrium equations, appears somewhat questionable.

We note that the above discussed difficulties with the incompressibility

constraint are somewhat easier to handle in the case_of assumed stress finite
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element methods based on a complementary rate principle of type given in Egs.

(73 and 74). [For a treatment of incompressibility, using assumed stress
finite element methods, see for instance, the works of TONG (1969), and
PIAN and LEE (1976) in linear elastic infenitesual deformation cases and

that of MURAKAWA and ATLURI (1978b) in finite elasticity problems].

3.2: Rate Variational Principles in Total Lagrangean Formulation:

In the numerical solution of certain problems such as, for instance,

plates and shells, it may be preferrable to use rate formulations wherein all the

variables in each subsequent increment are referred to a fixed Lagrangean
or Total Lagrangean (TL) frame. Thus in the TL formulation, the initial
configuration Co’ with coordinates X is used to refer all the state
variaﬁles in each of the subsequent configurations. Let s' and t' be the

rates of an and g Piola-Kirchhoff stresses, in going from CN to CN+1’

which stress rates are referred to and measured per unit area in the initial

configuration C,- Let 2? be the gradient operator in the coordinates in
Co’ and set u be the rate of displacement from the current state. Then the

Total Lagrangean strain-rate, E', is given by,

B -3 @' @ - @D @D @l (89)

where gy is the displacement at CN as measured from Co' It is seen that

the TL and UL strain-rates are related by:

T W T - (90)

where EN -t \_7°_l_lN)T

is the TL rate of displacement gradient, it is related to the UL rate é by

'wg . BV (91)
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and ¢ is defined in Eq. (33). Likewise, if ¢’ [E(z%i)T]




Also, from Eqs. (3 and 2), respectively, the relations between the TL

rates -‘5-.' and ;5: and UL rates,é and :5, respectively, can be derived as:

T = Pahaht (92)
and t' = JI‘I(’FJ‘I)'1 t=3'. ENT + su g s'T (93a,b)

where I is the value of the determinant of the matrix [yl: j]' Finally,
’
the TL rate of Jaumann stress, ,5" is seen, from Eqs.(4) and (5), to be *J

related to t' and 3‘ by:

3'=.2.[tN,g'+g'T.;§NT+ i .gN+gNT.~t'T] (94)
o ACUNC S5 L NG 25 UL U SIS
(95)

where £N and 3N are, respectively, the first and second Piola-Kirchhoff
stress tensors in CN as referred to and measured per unit area in Co;

EN is the engineering strain tensor in CN referred to Co; and g.N and 2’,‘
are fotation tensors, such that @N + o ') is an orthogonal tensor, and

these are found from the application of the polar-decomposition theorem as:

; ek
Gk 2 BTV e S S WY S U\ TP S Qs

~

(96) !

Now we consider the question of the forms of rate potentials for

8', t', and x'. First, we note that if a rate potential for s of the form

of Eq. (17) exists, then, inview of Eqs. (90) and (92), a rate potential
say W', can also be shown to exist for s'. Specifically, let the poten-

tial W fors Eq. (17) be written as:

W

=2 Mg 1sfke’

p—

BW/g = s (97a,b)
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Where, the tensor M can be expt.essed interms of Li and the relevant

‘ ijkt
plasticity parameters through Eqs. (18 and 16).

jkt

Then, in view of Eqs. (90) and (92), the rate potential W' for s' can

be written as:
] ¥ e
ijke By Eie’

-axi axi axk axz
N

TRED Byl: Byl: by:j 3,

W' o=

|}
N
=

QW' RE' = ' (98a,b)

where M.

ijkt © o

Likewise, inview of relation (93b) it can be seen that a rate potential U'

exists for’s', for the case of an classical elasto-plastic material, where,

5.

Uu' = W'+ %3 i(e' . 2'); au'/ag'T = t' (100a,b)

~

In writing the right hand side of Eq. (100a), the relation E' = 1/2

(g'T - EN +§NT . &') may be used. Likewise, inview of Eq. (95), it can

also be seen that a rate potential Q' for the TL rate of Jaumann stress,

r', also exists, where,
~

Q' =w +7s": (' . h');aQ/Ap =1 (101a,b)

Again, in writing the right hand side of Eq. (10la), the relation, E'=
1/2 [b' i ¢ +’L1N) + (I +bN) % b'] may be used.

Now we consider the rate form of the field equations and boundary
conditions. Considering the ;ates of Eqs. (6-12c) these can be written as:

In terms of s'; E'; and u':

~

LBy e 2T @D 4% =0 (102)
(AMB)- 8= g,'T (103)
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(Compatibility) E' = % [e' + s'T + S'T : SN + ,gNT . 2"] (104)
where e = (20}1)T
(TBC)~ n. {3N 5 s'T . ENTJ =t'=¢t"on Sq (105)
: o

Where E' are prescribed tractions per unit area of the surface segment So

o
of the boundary of the solid in C,» and n is a unit outward normal to So .
o
(DBC)~ u=uyats, (106)
o

In terms of t'; e'; and u (or £', o', h', and u):

(LMB)~ v .t +0%' =0 (107)
, U T i (108)
é .
or, equiValently,
(AMB)-~ e L ST CLI AR S ) (109)
= symmetric
(] Oe T
(Compatibility)— e = N (110)
or, equivalently, e' = g' . (IL+h") +a™ . h' = (%" (111)
i (TBC)~ .t =gt =t ats (112)
; o
(DBC)-~ u=yuats : (113)




3.2.1: General Variational Principles in TL Rate Form:

3.2.1.1: 1In terms of g8'; E'; and y_

Using procedures analogous to those leading to Eq. (42) of the UL
case, a general rate variational principle governing Eqs. (102 to 106, and

*
98b) can be stated through the condition of stationarity of the functional

2 i S v o BOHE T
nHw('g',E',andg)-J\; {w' (’g')-pg' .g+23:(g' .3') !
o 3
~silE -2 (e e T eT L N ML enlav
-t . uds-[ £ . (u-uw ds (114)
S S
(o} u
o o]

where ¢' = (EPE)T; W' is as defined in Eq. (98a), and t' is as defined in

Eq. (105). Once again, a functional n;w to check the true satisfaction of i

the fully nonlinear field equations in C, can be derived, but is omitted

N
here [ see MURAKAWA (1978),for instance, for further details]. If one
eliminates E' and s' from Eq. (114), by a priori satisfying Eqs. (98b, 104,

and 106), one obtains a potential energy rate principle with the associated

functional:
nf,(g) =f (w'(uw -p°' . u+1/2 5“: gg'T. e')]av
v, |
-[ &' . yuds. (115)
S
o]
o

where g' = (g?g)T. Likewise, by inverting Eq. 98b, one can achieve a contact
transformation,

W' - s":E' = -S'*(g') (116)

#This functional can be modified, in a manner analogous to that leading to
Eqs. (82 and 85) respectively, to derive rate principles which can be used
to treat cases of near or precise incompressibility,

R R SR T T T N



such that  E' =2s*/3g' - oaw

Using Eq. (116), one may eliminate;g' as a variable from Eq. (114) and obtain
a functional, say nsR(igg') corresponding to a HELLINGER-REISSNER type
rate principle. :

In general, a complementary energy rate principle may be derived from
Eq. (114) by eliminating E' from Eq. (114) using Eq. (116); and by satisfying
both the equations of LMB and AMB, Eqs. (102) and (103) respectively, a
priori. When this is done, one can formally obtain a complementary energy

rate functional,

n2(u,8") = {s™e) + 3 M . oM
o

ds (118)

el

'£,5'-

u
o

Thus, as in the UL rate formulation, even in the TL formulation, both s'

and u appear as variables in the complementary principle; however there is
a significant difference between the two cases from the point of view of
application. In the TL rate formulation, the AMB condition, Eq. (103), is
quite simple to be satisfied, provided the chosen s' is s&mmetric. However,
in LMB condition, Eq. (102), both the stress rate;g', and the displacement
gradient rate ¢' are involved; moreover, there is a strong coupling between
8' and the currently known functions,‘gN(g). Thus the admissible stress
field s', to be used in a complementary energy rate principle,.if one were
contemplated based on g', must represent a solution to the set of partial
differential equations, Eq. (102), with variable coefficients. While this
may mathematically not be impossible, ig defeats the very purpose of a

variational principle forming the basis of a simple numerical method such
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as a finite element method. Thus the rate complementary energy principle
based on s', for finite strain plasticity analysis, does not appear to be

practically useful.

3.2.1.2: Based on;sf;'e'; and u:

~

Likewise, a general variational principle governing Eqs. (107, 108, 110,
112, 113 and 100b) can be shown to be governed by the stationarity condition
of the functional:

RCEICERS =~‘r, oy -pp . u-gTile - e
‘ o]

-£ E'.éds-£ £ .o - a'y ds (119)
g Yo
where U' is defined through Eq. (100a); and t' is defined in Eq. (112). As
in the UL rate case, because of the special structure of U' as given in Eq.
(100a), it can be shown that t', as derived from U' through Eq. (100b),
identically satisfies the AMB condition, Eq. (108).
1f from Eq. (119) one eliminates e' a“d,E' as variables, by a priori
satisfying Eqs. (100b, 110, and 113), one can derive a rate form of a
potential energy functional:

ns‘(ix) =‘]‘; {U'(é) -p°%B' . _} dv -£ £ .uds (120)

o g
o

the stationarity of which functional! leads to Eqs. (107, 108, and 112) as

its Euler equations and natural b.c. However, the above variational prin-

ciple can be seen to identical to that in Eq. (115), because of Eq. (lG:a).
By inverting Eq. (100b), one may, under certain conditions analogous

to those discussed in the UL rate case, achieve a contact transformation,
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U'(sl) 2 t'T:;g' = r.Tl*gsl) (121)

'T

£ 5
Such that 3T' ' = ¢ (122)

However, analogous to the situation discussed earlier in connection with the
UL rate formulation, the AMB condition, Eq. (108), cannot be verified to |
be embedded in the structure of T' (t') as obtained from Eq. (121). Thus
. the HELLINGER-REISSNER.type principle in terms of's' and é (derivable by j
using Eq. (121) in Eq. (119)], or the complementary energy rate principle '
in terms of t' alone [derivable by satisfying conditions of Eqs. (121, 107, g

and 112) a priori in Eq. (119)] cease to be rational principles; since, the ]

*
AMB condition for t' is neither embedded in the structure of T' nor does

it follow as an Euler equation from these principles.

3.2.1.3: In terms of g¢'; h'; u'; and z'(t'; ')

Once again, to avoid the above difficulties in formulating consistent
; complementary energy and Hellinger-Reissner type rate variational principles,

we transform the general variational principle associated with Eq. (119)

into one involving r'; @¢'; b'; and u as variables. To this end we first

note from Eqs. (100a) and (10la),

N
U'mQ - 1/28: (@' . B+ 228" (e . &) (123)
Upon making use of the relations,
' ! N N 1]
g syt gt h)re 0B (124)

and the orthogonality condition and its rate form;

(125)
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i
1
|

N
s

~

and the relation'gN = .quT, one can, through relatively straightforward

algebra, reduce Eq. (123) to

Ut = Q' -tV @ R - 1/2: [t g gt . @+ ED] (126)
Upon using Eq. (126) and (124), Eq. (119) can be rewritten as:
TT2 (U' h' dl, tl) - {Ql(hl) i OBI
= x2S ,I; ~ Pz -
o

TSR A L I

AR TC TR D IR VE B alr LNV V¢ S ) P

-[ E .uwds-[ t' . (u-wds (127)

s"o suo

Where Q'(h') is the potential for r' as defined in Eq. (10la) and r' is to
be related t°.£' and g' through Eq. (94). Noting that the variations &g’
are required to satisfy the property of Eq. (125b), viz., that‘gNT . g'

is skew symmetric, it can be easily shown that the stationarity condition of

the above functional yields the Euler equations and natural b.c: (i) the LMB 1
condition, Eq. (107); (ii) the AMB condition, Eq. (109); (iii) the compatibility
condition, Eq. (111); (iv) the rate constitutive law, Eq. (101b); (v) the TBC, ;
Eq. (112), and (vi) the DBC Eq. (113).

By inverting (even if numerically) the relation of Eq. (10lb), one 4

can obtain a contact transformation,

Ql -,5':h' - -R'*(,s')
| %*
or Q= L " . Q,N+~CN o +gNT F '_t"T +z'T ¢ 'SNT]:B' = -R' (")
(128)
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* -
such that AR' /a's' -h' (129)

By using Eq. (128), o'ne can eliminate h' as a variable from Eq. (127)
and obtain a functional ﬂ}Z{R(g s 2's "5') corresponding to a HELLINGER-REISSNER
type variational principle.

Finally, by requiring t' to satisfy only the linear LMB condition, Eq.
(107), and the TBC, Eq. (112), one can eliminate u' as a variable from

ﬂfm and obtain a TL rate complementary energy functional,

"<2: t'sa') =£ {-R'*(};') -,g'T:[g' . Q+£N)]
o
- %sNT:[g' . gNT W (I»+3N)]}dV
+£ El z ; ds : (130)
u
o

Wherein it is implied that x' is related to £' and ¢' through Eq. (94).

Noting that the variations 6’5' are now subject to the constraints that

_V_o .8t' =0in V, and n . 6t' = 0 at Sy 3 and that the variation 6a' are

o
subject to the constraint that g.NT . 8g' is skew-symmetric, it can be shown

"easily that the condition of vanishing of the first variation of the above

functional leads to: (i) compatibility condition, (Vo!_A:)T =g' . (T + bN) +
N

o« . B'; (ii) the AMB condition, Eq. (109); (iii) the DBC, Eq. (113).

Once again, in as much as the AMB condition follows unambiguously as
in Euler equation; and the admissible‘,s' is required to satisfy only the
uncoupled linear LMB condition, Eq. (107) [which can.be satisfied easily
through first-order stress functions, Y, as £' = <_7° xx + ‘s'p; and £‘p is any

(o]
part:i.cular solution such that Y_ . £'p= -QOB'], and the TBC, Eq. (12), the
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TL rate complementary energy principle of Eq. (130), is the most consistent
and useful princiﬁ{e for purposes of engineering application.

As in Eq. (75) for the UL rate case, in the application of Eq. (130)
also to a finite element assemblage, the interelement traction reciprocity
condition, (n '.S')+ + (n ;'5')- at p_~ can be relaxed a priori, and in-
troduced as a constraint condition in a modified complementary energy
g

principle through Lagrange Multipliers & at P mo* This modified principle

is stated through the functional:

2 (e l. ~ ) {_ ' Ll ] N
ey _,ﬁ£ R'' (') - t .[g_ . (T+h)]
o PO U B )
& = ~
+ ) £ t' .uds+T‘r (@.t').u dp (131)
e ol R L-’ e o~ _p
m p
u mo
mo

As in the UL rate case [see discussion following Eq. (75)] the
functional in Eq. (31) can be used to develop a finite element "stiffness
matfix" method and Eq. (130) can be used to develop finite element '"flexibility
matrix" approach. The author's work in progress in this regard, along with
analysis of certain metal forming problems is the subject of a forthcoming
paper. .

Finally it should be remarked that eventhough the development of Eq. (130),
as a basis of a TL rate complementary energy principle for finite strain
elasto-plasticity was based on independent considerations, the result
is analogous to the principle derived by FRAEIJS DE VEUBEKE (1972). However,
FREIJS DE VEUBEKE'S (1972) principle governs the total (as opposed to rates)

deformations of a compressible elastic solid. It is also noted that a TL
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rate principle equivalent to that of FRAEIJS DE VEUBEKE (1972) was developned
and used, in the éontext of an assumed stress-rate finite element method,

to solve certain finite strain problems for nonlinear elastic, compressible
as well as incompressible solids by MURAKAWA and ATLURI (1978a,b).

Finally we remark that the TL rate complementary energy principle for
elastic-plastic solids given presently in Eq. (130) differs slightly from
that for nonlinear elastic solids given eariler by MURAKAWA and ATLURI
(1978a), this difference is in the third term in the volume integrand on
the right hand side of Eq. (130)$ instead of the term appearing in Eq. (130),
the term -;ENTzﬁz' . (I +'hN)] appears in the paper by MURAKAWA and ATLURI
(1978a). The effect of this is: whereas the exact rate condition of AMB,

. Eq. (109) becomes an Euler equation of the principle in Eq. (130), the AMB
condition which follows as an Euler Equation for the prihciple given in
MURAKAWA and ATLURI (1978a) is that (I+ h') . t' .o +h' . t' . oV is
symmetric [which conditioﬁ represents only an approximation to the exact
condition, Eq. (109)]. However, the iterative correction procedures to
check the satisfaction of the fully nonlinear AMB condition of Eq. (lla) at
the end of each increment were employed by MURAKAWA and ATLURI (1978a) to
correct the above approximation in the rate AMB condition. In this sense,
the principle currently stated through Eq. (130) [which is equally applicable
to nonlinear elastic solids, when the potential R'*gs') is appropriately

defined] is the most consistent TL rate complementary energy principle for

 finite strain analysis of elastic as well as elastic-plastic solids.
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